Construct a definition for the statement of the form \(\lim\limits_{x \rightarrow \infty} f(x) = L\) and use it to prove the \(\lim\limits_{x \rightarrow \infty} 1/x = 0\)

Definitions and Theorems:


Solution

Let \(f: A \rightarrow \mathbb{R}\). We say that

$$ \begin{align*} \lim_{x \to \infty} f(x) = L \end{align*} $$

if for all \(\epsilon > 0\), there exists an \(N > 0\) such that whenever \(x > N\) and \(x \in A\), it follows that

$$ \begin{align*} |f(x) - L | < \epsilon \end{align*} $$

To show that \(\lim\limits_{x \rightarrow \infty} 1/x = 0\). Then for any \(\epsilon > 0\), we want to find an \(\N\) such that

$$ \begin{align*} x > N \quad \Rightarrow \quad |\frac{1}{x} - 0| < \epsilon \end{align*} $$

working backward

$$ \begin{align*} \frac{1}{x} &< \epsilon \\ x &> \frac{1}{\epsilon} \end{align*} $$

So we want to choose \(N\) to be \(\frac{1}{\epsilon}\). So that whenever \(x > N\), we get

$$ \begin{align*} x &> \frac{1}{\epsilon} \\ \frac{1}{x} &< \epsilon \\ |\frac{1}{x} - 0| &< \epsilon \end{align*} $$

References

  • Problem Statement Source: Aleph 0