[4.2.5] Divergence Criterion for Functional Limits:
Let \(f: A \rightarrow \mathbb{R}\) and let \(c\) be a limit point of \(A\). If there exists two sequences \((x_n)\) and \((y_n)\) in \(A\) with \(x_n \neq c\) and \(y_n \neq c\) and $$ \begin{align*} \lim x_n = \lim y_n = c \quad \text{ but } \quad \lim f(x_n) \neq \lim f(y_n), \end{align*} $$ then we conclude that the functional limit \(\lim_{x \rightarrow x} f(x)\) does not exist.

Definition of functional limits


Example (1)

Take the function

$$ \begin{align*} f(x) = \begin{cases} 0, & \text{if } x \leq 0 \\ 1, & \text{if } x > 0 \end{cases} \end{align*} $$

We know that \(\lim\limits_{x \rightarrow 0}\) doesn’t exist. We can use the divergence corollary to show this by considering the sequences

$$ \begin{align*} (x_n) &= \frac{1}{n} \quad \text{ and } \quad (y_n) = -\frac{1}{n} \end{align*} $$

Then, clearly as \(n \rightarrow \infty\), \((x_n) \rightarrow 0\) and \((y_n) \rightarrow 0\). However, observe that \(f(x_n) = 1\) while \(f(y_n) = 0\) for all \(n\). This means that \(\lim f(x_n) = 1\) while \(\lim f(y_n) = 0\). Therefore,

$$ \begin{align*} \lim f(x_n) \neq \lim f(y_n) \end{align*} $$

Thus by 4.2.5, the limit doesn’t exist.


References