The statement \(\lim\limits_{x \rightarrow 0} 1/x^2= \infty\) certainly makes intuitive sense. Construct a rigorous definition in the *challenge-response* style for a limit statement of the form \(\lim\limits_{x \rightarrow c} f(x) = \infty\) and use it to prove the previous statement.

Definitions and Theorems:


Solution

Let \(f: A \rightarrow \mathbb{R}\) and let \(c\) be a limit point of \(A\). We say that

$$ \begin{align*} \lim_{x \to c} f(x) = +\infty \end{align*} $$

if for all \(M > 0\), there exists a \(\delta > 0\) such that whenever \(0 < |x - c| < \delta\) and \(x \in A\), it follows that

$$ \begin{align*} f(x) > M \end{align*} $$

So no matter how larget \(M\), we can always \(\delta\) that forces \(f(x)\) to be larger than \(M\)


To show that \(\lim\limits_{x \rightarrow 0} 1/x^2= \infty\). Then for any \(M > 0\), we want to find a \(\delta\) such that

$$ \begin{align*} 0 < |x - 0| < \delta \quad \Rightarrow \quad \frac{1}{x^2} > M \end{align*} $$

working backward

$$ \begin{align*} \frac{1}{x^2} &> M \\ x^2 &< \frac{1}{M} \\ |x| &< \frac{1}{\sqrt{M}} \end{align*} $$

So we want to choose \(\delta\) to be \(\frac{1}{\sqrt{M}}\). So that whenever \(0 < |x - 0| < \delta\), we get

$$ \begin{align*} |x| &< \frac{1}{\sqrt{M}} \\ x^2 &< \frac{1}{M} \\ \frac{1}{x^2} &> M \end{align*} $$

References

  • Problem Statement Source: Aleph 0