Example
Suppose that \(\{x_n\}\) is a sequence such that $$ |x_{n+1} - x_n| \leq \frac{1}{2^n} $$ Then \(\{x_n\}\) is Cauchy and hence convergent.

Proof

Let \(\epsilon > 0\) be given. Choose \(N\) by the Archimedean principle such that

$$ \begin{align*} \frac{1}{2^{N-1}} < \epsilon \end{align*} $$

Then whenever \(m,n > N+1\) we have

$$ \begin{align*} |x_m - x_n| &\leq |x_m - x_{m-1}| + |x_{m-1} - x_{m-2}| + \ldots + |x_{n+1} - x_n| \\ &\leq \frac{1}{2^{m-1}} + \ldots + \frac{1}{2^{n}} \\ &= \frac{1}{2^n} \left(1+ \frac{1}{2} + \ldots + \frac{1}{2^{m-n-1}} \right) \\ &= \frac{1}{2^n} \left( \frac{1 - \left(\frac{1}{2}\right)^{m-n}}{1 - \frac{1}{2}} \right) \\ &\leq \frac{1}{2^{n-1}} \leq \frac{1}{2^N} < \epsilon. \ \blacksquare \end{align*} $$

References

  • Lecture Notes by Professor Chun Kit Lai