Theorem 0.3
Suppose that \(f\) be Riemann integrable on \([a,b]\). Then, \(|f|\) is Riemann integrable.
Proof
Let \(f\) be Riemann integrable on \([a,b]\). Recall the reverse triangle inequality is
$$
\begin{align*}
\bigl||a| - |b|\bigr| \le |a-b|
\end{align*}
$$
Now, for any subinterval \([x_{j-1},x_j]\), and for any \(x,y \in [x_{j-1},x_j]\), we have
$$
\begin{align*}
\bigl||f(x)| - |f(y)|\bigr| \le |f(x)-f(y)| \quad\quad\quad (1)
\end{align*}
$$
We know \(m_j(f) \le f(x)\) for all \(x\) and \(f(y) \le M_j(f)\) for all \(y\) in this interval. Hence any difference \(|f(x)-f(y)|\) will be at most
$$
\begin{align*}
|f(x)-f(y)| \le M_j(f) - m_j(f) \quad\quad\quad (2)
\end{align*}
$$
Combining (1) and (2)
$$
\begin{align*}
\bigl||f(x)| - |f(y)|\bigr| \le M_j(f) - m_j(f) \quad\quad\quad (3)
\end{align*}
$$
Now, recall that \(A\) is a set of points, then
$$
\begin{align*}
\sup_{a,b \in A} |a -b| = \sup A - \inf A
\end{align*}
$$
Using this fact, then taking the supremum over all \(x,y \in [x_{j-1},x_j]\), we obtain
$$
\begin{align*}
M_j(|f|) - m_j(|f|) = \sup_{x,y} \bigl||f(x)| - |f(y)|\bigr| \quad\quad\quad (4)
\end{align*}
$$
[TODO……….]
Then, for any partition \(\mathcal{P}\), we have
$$
\begin{align*}
U(|f|, \mathcal{P}) - L(|f|, \mathcal{P}) \leq U(f, \mathcal{P}) - L(f, \mathcal{P}) \quad\quad\quad (6)
\end{align*}
$$
But we know that \(f\) is Riemann integrable, then
$$
\begin{align*}
U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon \quad\quad\quad (7)
\end{align*}
$$
Combining (6) and (7) we get that \(|f|\) is Riemann Integrable:
$$
\begin{align*}
U(|f|, \mathcal{P}) - L(|f|, \mathcal{P}) < \epsilon
\end{align*}
$$
Next, by the definition of absolute value
$$
\begin{align}
-|f(x)| \leq f(x) \leq |f(x)|
\end{align}
$$
Integrating this, we get
$$
\begin{align}
-\int_a^b |f(x)|dx \leq \int_a^b f(x)dx \leq \int_a^b |f(x)|dx
\end{align}
$$
References
- Introduction to Analysis, An, 4th edition by William Wade
- Lecture Notes by Professor Chun Kit Lai