Definition
  1. We say that \(f\) is increasing on \((a,b)\) if for all \(a < x_1 < x_2 < b\), $$f(x_1) \leq f(x_2).$$
  2. We say that f is strictly increasing on \((a,b)\) if for all \(a < x_1 < x_2 < b\), $$f(x_1) < f(x_2).$$
  3. We say that f is decreasing on \((a,b)\) if for all \(a < x_1 < x_2 < b\), $$f(x_1) \geq f(x_2).$$
  4. We say that f is strictly decreasing on \((a,b)\) if for all \(a < x_1 < x_2 < b\), $$f(x_1) >f(x_2).$$

References