Differentiability Theorem
If \(f\) is differentiable at a point \(x = a\), then \(f\) must be continuous at \(x = a\)
Proof
Since \(f\) is differentiable at \(x = a\), then by defintion
$$
\begin{align*}
f'(a) = \lim\limits_{x \to a} \frac{f(x) - f(a)}{x - a}
\end{align*}
$$
exists. Now note that
$$
\begin{align*}
f(x) &= f(x) \\
f(x) &= (f(x) - f(a)) + f(a) \\
f(x) &= \frac{f(x) - f(a)}{x - a} \cdot (x - a) + f(a)
\end{align*}
$$
Applying the limit on both sides
$$
\begin{align*}
\lim\limits_{x \to a} f(x) &= \lim\limits_{x \to a} \left[ \frac{f(x) - f(a)}{x - a} \cdot (x - a) + f(a) \right] \\
\lim\limits_{x \to a} f(x) &= \lim\limits_{x \to a} \frac{f(x) - f(a)}{x - a} \cdot \lim\limits_{x \to a} (x - a) + \lim\limits_{x \to a} f(a) \\
\lim\limits_{x \to a} f(x) &= f'(a) \cdot 0 + f(a) \\
\lim\limits_{x \to a} f(x) &= f(a)
\end{align*}
$$
Hence, \(f\) is continuous at \(x = a\). \(\ \blacksquare\)
Note: the converse is false!
References
- Introduction to Analysis, An, 4th edition by William Wade
- Lecture Notes by Professor Chun Kit Lai