Example
Is \(x\sin\left(\frac{1}{x}\right)\) is continuous at \(x=0\)?

Proof

We first observe that the function \(x\sin\left(\frac{1}{x}\right)\) is not defined at \(x=0\). Define

$$ \begin{align} f(x) = \begin{cases} x \sin\left(\dfrac{1}{x}\right), & \text{if } x \neq 0, \\ 0, & \text{if } x = 0. \end{cases} \end{align} $$

We will show that \(f\) is continuous at \(x = 0\). Let \(\epsilon > 0\) be given and choose \(\delta = \epsilon\). Now suppose that

$$ \begin{align} \left| x - 0 \right| = |x| < \delta \end{align} $$

Since \(\left|\sin\left(\frac{1}{x}\right)\right| \leq 1\) for all \(x \neq 0\), then

$$ \begin{align*} \left| f(x) - f(0) \right| &= \left| x\sin\left(\frac{1}{x}\right) - 0 \right| \\ &= |x| \left|\sin\left(\frac{1}{x}\right)\right| \\ &\leq |x| \\ &< \epsilon. \end{align*} $$


References