Lemma: Local Boundedness
If \(\lim\limits_{x \to a} f(x) = L\), then there exists an \(M > 0\) and \(\delta > 0\) such that \(f(x) \leq M\) for all \(|x - a| < \delta\).

Proof

Let \(\epsilon = 1\). Then by defintion there exists a \(\delta > 0\) such that \(|x - a| < \delta\) implies that

$$ \begin{align*} |f(x)| - L \leq |f(x) - L| < 1 \end{align*} $$

Hence, \(|f(x)| \leq 1 + L\) if \(|x - a| < \delta\). \(\ \blacksquare\)


References