Lemma (bounded)
If \(\lim\limits_{x \to a} f(x) = L\), then there exists an \(M > 0\) and \(\delta > 0\) such that $$ \begin{align*} |f(x)| \leq M \quad \text{ for all } | x - a| < \delta \end{align*} $$

Proof

Since \(\lim\limits_{x \to a} f(x) = L\), then when \(\epsilon = 1\), there exists a \(\delta > 0\) such that \(|x - a| < \delta\) implies

$$ \begin{align*} |f(x) - L| &< 1 \\ |f(x)| - L \leq |f(x) - L| &< 1 \quad \text{(Reverse Triangle Inequality)} \\ |f(x)| &\leq L + 1. \end{align*} $$

Hence \(|f(x)| \leq 1 + L\) whenever \(|x - a| < \delta\). \(\blacksquare\)


References