Theorem (9-2)
If \(p\) is an odd prime and \(a\) and \(b\) are relatively prime to \(p\), then
$$
\begin{align}
\left(\frac{a}{p}\right) &= \left(\frac{b}{p}\right), \quad \text{if} \quad a \equiv b \pmod{p} \\
\left(\frac{ab}{p}\right) &= \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \\
a^{\frac{p-1}{2}} &\equiv \left(\frac{a}{p}\right) \pmod{p}
\end{align}
$$
Proof
$$
\begin{align}
TODO
\end{align}
$$
Theorem (9-4) (Quadratic Reciprocity Law)
If \(p\) and \(q\) are distinct odd primes, then
$$
\begin{align}
\left(\frac{p}{q}\right) = \left(\frac{q}{p}\right)
\end{align}
$$
unless \(p \equiv q \equiv 3 \pmod{4}\) in which case,
$$
\begin{align}
\left(\frac{p}{q}\right) = -\left(\frac{q}{p}\right)
\end{align}
$$
This can also be written as
$$
\begin{align}
\left(\frac{p}{q}\right)\left(\frac{q}{p}\right) = (-1)^{(p-1)(q-1)/4}
\end{align}
$$
Proof
$$
\begin{align}
TODO
\end{align}
$$
Theorem (9-5)
If \(p\) is an odd prime, then
$$
\begin{align}
\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} =
\begin{cases}
1, & \text{if } p \equiv 1 \pmod{4} \\
-1, & \text{if } p \equiv 3 \pmod{4}
\end{cases}
\end{align}
$$
and
$$
\begin{align}
\left(\frac{2}{p}\right) = (-1)^{\frac{p^2-1}{8}} =
\begin{cases}
1, & \text{if } p \equiv \pm 1 \pmod{8} \\
-1, & \text{if } p \equiv \pm 3 \pmod{8}
\end{cases}
\end{align}
$$
Proof
$$
\begin{align}
TODO
\end{align}
$$
Applications of the Quadratic Reciprocity Law
The following theorem is an application of the quadratic reciprocity law:
Theorem (9-6)
If \(p\) is an odd prime and \(\gcd(a,p) = 1\), then the congruence
$$
\begin{align}
x^2 \equiv a \pmod{p^n}
\end{align}
$$
has a solution if and only if \(\left( \dfrac{a}{p} \right) = 1\)
Proof
$$
\begin{align}
TODO
\end{align}
$$
References
- Number Theory by Georege Andrews