Recall that the order of \(a \pmod{m}\) is the smallest positive integer \(h\) such that

$$ \begin{align*} a^h \equiv 1 \pmod{m} \end{align*} $$

Based on this, we have the following theorem

Theorem (7.2 in Andrews)
If \(a\) has order \(h\) modulo \(m\). Then, $$ \begin{align*} a^r \equiv 1 \pmod{m} \end{align*} $$ Then \(h \mid r\).

Proof

Let \(a\) be an element of order \(h\) modulo \(m\). Suppose

$$ \begin{align*} a^r \equiv 1 \pmod{m} \end{align*} $$

By the divison algorithm write

$$ \begin{align*} r = kh + s \quad (0 \leq s < h) \end{align*} $$

Then

$$ \begin{align*} a^{r} \equiv a^{kh + s} \equiv a^{kh} \cdot a^s \equiv a^s \pmod{m} \end{align*} $$

But \(h\) is the smallest integer such that \(a^h \equiv 1 \pmod{m}\) and \(s < h\). Thus, \(s = 0\). Therefore, \(h \mid r\). \(\ \blacksquare\)


References

  • Number Theory by George E. Andrews