2.3: Problem 17: Solve the congruence \(x^3 - 9x^2 + 23x - 15 \equiv 0 \pmod{503}\) by observing that \(503\) is a prime and that the polynomial factors into \((x-1)(x-3)(x-5)\).

Solution

We are given that the polynomial factors so into \((x-1)(x-3)(x-5)\)

$$ \begin{align*} x^3 - 9x^2 + 23x - 15 &\equiv 0 \pmod{503} \\ (x-1)(x-3)(x-5) &\equiv 0 \pmod{503} \end{align*} $$

But since \(503\) is prime, then we must have

$$ \begin{align*} (x-1) &\equiv 0 \pmod{503} \text{ or } \\ (x-3) &\equiv 0 \pmod{503} \text{ or } \\ (x-5) &\equiv 0 \pmod{503} \end{align*} $$

But this means that

$$ \begin{align*} x &\equiv 1 \pmod{503} \text{ or } \\ x &\equiv 3 \pmod{503} \text{ or } \\ x &\equiv 5 \pmod{503} \end{align*} $$

So we have 3 solutions. (Side note: if \(n\) isn’t prime, then it’s not necessarily that if \(ab \equiv 0 \pmod{n}\) would imply that \(a \equiv 0\) or \(b \equiv 0\). Zero divisors do exist when \(n\) is not prime. As an example, observe that \(2 \cdot 3 \equiv 0 \pmod{6}\).


References