2.3: Problem 14: Solve the congruences: $$ \begin{align*} x^3 + 2x - 3 &\equiv 0 \pmod{9}; \\ x^3 + 2x - 3 &\equiv 0 \pmod{5}; \\ x^3 + 2x - 3 &\equiv 0 \pmod{45}; \end{align*} $$

Solution

For the first congruence, we can try \(x = 0,1,2,\cdots,8\) to see that

$$ \begin{align*} (0)^3 + 2(0) - 3 &\equiv -3 \equiv 6 \pmod{9} \\ (1)^3 + 2(1) - 3 &\equiv 0 \pmod{9} \\ (2)^3 + 2(2) - 3 &\equiv 9 \equiv 0 \pmod{9} \\ (3)^3 + 2(3) - 3 &\equiv 3 \pmod{9} \\ (4)^3 + 2(4) - 3 &\equiv 6 \pmod{9} \\ (5)^3 + 2(5) - 3 &\equiv 132 \equiv 6 \pmod{9} \\ (6)^3 + 2(6) - 3 &\equiv 225 \equiv 0 \pmod{9} \\ (7)^3 + 2(7) - 3 &\equiv 354 \equiv 3 \pmod{9} \\ (8)^3 + 2(8) - 3 &\equiv 525 \equiv 3 \pmod{9} \end{align*} $$

So the solutions are

$$ \begin{align*} x \equiv 0,2,6 \pmod{9} \\ \end{align*} $$

Next, we can try \(x = 0,1,2,3,4\) for the second congruence

$$ \begin{align*} (0)^3 + 2(0) - 3 &\equiv -3 \equiv 2 \pmod{5} \\ (1)^3 + 2(1) - 3 &\equiv 0 \pmod{5} \\ (2)^3 + 2(2) - 3 &\equiv 9 \equiv 4 \pmod{5} \\ (3)^3 + 2(3) - 3 &\equiv 30 \equiv 0 \pmod{5} \\ (4)^3 + 2(4) - 3 &\equiv 69 \equiv 4 \pmod{5} \end{align*} $$

So the solutions are

$$ \begin{align*} x \equiv 1,3 \pmod{5} \\ \end{align*} $$

Now, recall that CRT says since \((5,9)=1\) and if we have a solution module \(9\) and a solution module \(5\), then there is a unique solution module \(5 \cdot 9 = 45\). So we can try each pair from \(\{1,2,6\} \times \{1,3\}\) to get a new solution module \(45\). First, we have

$$ \begin{align*} x \equiv 1 \pmod{9} \\ x \equiv 1 \pmod{5} \end{align*} $$

Then, by CRT, \(1\) is a solution module \(45\). Next

$$ \begin{align*} x \equiv 1 \pmod{9} \\ x \equiv 3 \pmod{5} \end{align*} $$

If we try values for \(x\), we will see that \(x = 28\) is a solution. If we want to solve this, then observe that from the first equation \(x = 9k + 1\). Now we can plugin in the second congruence to see that

$$ \begin{align*} 9k + 1 &\equiv 3 \pmod{5} \\ 9k &\equiv 2 \pmod{5} \\ 4k &\equiv 2 \pmod{5} \\ 4\cdot 4k &\equiv 4 \cdot 2 \pmod{5} \\ k &\equiv 8 \pmod{5} \\ k &\equiv 3 \pmod{5} \end{align*} $$

We can plug this back into

$$ \begin{align*} x &= 9k + 1 \\ x &= 9(5m + 3) + 1 \\ x &= 45m + 27 + 1 \\ x &= 45m + 28 \end{align*} $$

This implies that \(x \equiv 28 \pmod{45}\) so \(28\) is a solution. Next, we can repeat the same process to find solutions for the pairs

$$ \begin{align*} x \equiv 2 \pmod{9} \\ x \equiv 1 \pmod{5} \end{align*} $$

,

$$ \begin{align*} x \equiv 2 \pmod{9} \\ x \equiv 3 \pmod{5} \end{align*} $$

,

$$ \begin{align*} x \equiv 6 \pmod{9} \\ x \equiv 1 \pmod{5} \end{align*} $$

and finally

$$ \begin{align*} x \equiv 6 \pmod{9} \\ x \equiv 3 \pmod{5} \end{align*} $$

\(\cdots\)


References