Problem 17: Show that \(61! + 1 \equiv 63! + 1 \equiv 0 \pmod{71}\).

Proof

Since \(71\) is prime, then we know by Wilson’s Theorem that

$$ \begin{align*} 70! &\equiv -1 \pmod{71} \end{align*} $$

We can expand \(70!\) to see that

$$ \begin{align*} (70 \cdot 69 \cdot 68 \cdot 67 \cdot 66 \cdot 65 \cdot 64) \cdot 63! &\equiv -1 \pmod{71} \end{align*} $$

We also know that

$$ \begin{align*} a \cdot b \pmod{m} = (a \pmod{m}) \cdot (b \pmod{m}) \pmod{m} \end{align*} $$

and we know that

$$ \begin{align*} 70 &\equiv -1 \pmod{71} \\ 69 &\equiv -2 \pmod{71} \\ 68 &\equiv -3 \pmod{71} \\ \cdots \\ 64 &\equiv -7 \pmod{71} \\ \end{align*} $$

Then we can simplify the original product module \(71\) to

$$ \begin{align*} (-1 \cdot -2 \cdot -3 \cdot -4 \cdot -5 \cdot -6 \cdot -7) \cdot 63! &\equiv -1 \pmod{71} \\ (-1 \cdot -2 \cdot -3 \cdot -4 \cdot -5) \cdot (-6 \cdot -7) \cdot 63! &\equiv -1 \pmod{71} \\ (-120 \cdot 42) \cdot 63! &\equiv -1 \pmod{71} \\ (22 \cdot 42) \cdot 63! &\equiv -1 \pmod{71} \\ 63! &\equiv -1 \pmod{71} \end{align*} $$

From this, we see that

$$ \begin{align*} 63! + 1 &\equiv 0 \pmod{71} \end{align*} $$

Next, we want to show that \(63! + 1 \equiv 61! + 1 \pmod{71}\). To see this, observe that

$$ \begin{align*} 63! &\equiv (62 \cdot 61) \cdot 61! \pmod{71} \\ 63! &\equiv (3906) \cdot 61! \pmod{71} \\ &\equiv 1 \cdot 61! \pmod{71} \\ &\equiv 61! \pmod{71} \end{align*} $$

Therefore

$$ \begin{align*} 63! + 1 &\equiv 61! + 1 \equiv 0 \pmod{71} \end{align*} $$

as desired. \(\ \blacksquare\)


References