2.1: Problem 18: Show that if \(p \equiv 3 \pmod{4}\), then \(\left(\frac{p-1}{2}\right)! \equiv \pm 1 \pmod{p}\)

Proof

The expansion of \((p-1)!\) is

$$ \begin{align*} 1 \cdot 2 \cdot 3 \cdot 4 \cdots (p-1) \end{align*} $$

Observe that \(\left(\frac{p-1}{2}\right)!\) is the product of the first \(\frac{p-1}{2}\) elements above. But these elements pair off with the remaining \(\frac{p-1}{2}\) numbers (except for the sign) meaning that

$$ \begin{align*} (p-1) &\equiv -1 \pmod{p} \\ (p-2) &\equiv -2 \pmod{p} \\ (p-3) &\equiv -3 \pmod{p} \\ &\cdots \end{align*} $$

Therefore, we can write

$$ \begin{align*} (p-1)! \equiv \left(\frac{p-1}{2}\right)! \cdot \left(\frac{p-1}{2}\right)! \cdot (-1)^{\frac{p-1}{2}} \pmod{p} \end{align*} $$

But by Wilson’s theorem, we know that

$$ \begin{align*} (p-1)! \equiv -1 \pmod{p} \end{align*} $$

Thus

$$ \begin{align*} -1 &\equiv \left(\frac{p-1}{2}\right)! \cdot \left(\frac{p-1}{2}\right)! \cdot (-1)^{\frac{p-1}{2}} \pmod{p} \\ -1 &\equiv \left[\left(\frac{p-1}{2}\right)!\right]^2 \cdot (-1)^{\frac{p-1}{2}} \pmod{p} \end{align*} $$

Now, recall that

$$ \begin{align*} p \equiv 3 \pmod{4} \end{align*} $$

so \(p - 3 = 4k\) for some \(k\). Thus,

$$ \begin{align*} \frac{p-1}{2} = \frac{4k+3-1}{2} = \frac{4k+2}{2} = 2k+1 \end{align*} $$

This means that \(\frac{p-1}{2}\) is odd and not even. Therefore

$$ \begin{align*} 1 &\equiv \left[\left(\frac{p-1}{2}\right)!\right]^2 \pmod{p} \end{align*} $$

Since the only square roots of \(1 \pmod{p}\) are \(\pm 1\) we conclude

$$ \begin{align*} \pm 1 &\equiv \left(\frac{p-1}{2}\right)! \pmod{p} \end{align*} $$

as desired. \(\ \blacksquare\)


References