2.1: Problem 06: Prove that if \(p\) is a prime and \(a^2 \equiv b^2 \bmod p\), then \(p \mid (a + b)\) or \(p \mid (a - b)\).

Proof

Suppose \(p\) is prime and that \(a^2 \equiv b^2 \bmod p\). Then by definition

$$ \begin{align*} p &\mid a^2 - b^2 \\ p &\mid (a - b)(a + b) \end{align*} $$

But \(p\) is prime so either \(p \mid (a- b)\) or \(p \mid (a+b)\). \(\ \blacksquare\)


References