Problem 2.1.1(b)
Prove that \(1 + \pi/\sqrt{n} \rightarrow 1\) as \(n \rightarrow \infty\).

Strategy

We want to choose \(N\) such that we get this inequality (so we solve for \(n\))

$$ \begin{align*} | 1 + \pi/\sqrt{n} - 1 | &< \epsilon \\ | \pi/\sqrt{n} | &< \epsilon \\ \pi/\sqrt{n} &< \epsilon \\ \pi/\epsilon &< \sqrt{n} \\ (\pi/\epsilon)^2 &< n. \end{align*} $$

Formal Proof

Let \(\epsilon > 0\). Use the Archimedean Principle to choose \(N \in \mathbb{N}\) such that

$$ \begin{align*} N > (\pi/\epsilon)^2. \end{align*} $$

This implies that

$$ \begin{align*} \epsilon > \pi/\sqrt{N} \end{align*} $$

When \(n \geq N\), then

$$ \begin{align*} | (1 + \pi/\sqrt{n}) - 1| &= | \pi/\sqrt{n} | \\ &= \pi/\sqrt{n} \quad \text{(Since $n > 0$)} \\ &\leq \pi/\sqrt{N} \quad \text{(Since $n \geq N$)} \\ &< \epsilon. \end{align*} $$

Therefore, \(1 + \pi/\sqrt{n} \rightarrow 1\) as \(n \rightarrow \infty\). \(\ \blacksquare\)


References