Section 6.3: Exercise 18
Exercise 18
Let \(A\) be an \(n \times n\). Prove that \(\det(A^*) = \overline{A}\).
Proof:
Let \(A\) be a matrix of size \(n \times n\). We first will prove that \(\det(\overline{A}) = \overline{\det{A}}\) by induction on \(n\).
Base Case: \(n = 1\). \(\det(\overline{A}) = \overline{a_{11}} = \overline{\det{(A)}}\).
Inductive Case: Assume \(\det(\overline{A}) = \overline{\det{A}}\) for \(n-1\). We will prove this for \(n\). Computing the determinant of \(\overline{A}\) by cofactor expansion along the first row and applying the inductive hypothesis
$$
\begin{align*}
\det(\overline{A}) &= (-1)^{1+1}\overline{a_{11}}\det{\widetilde{\overline{A_{11}}}}
+ (-1)^{1+2}\overline{a_{12}}\det{\widetilde{\overline{A_{12}}}} + ... + \\
&+ (-1)^{1+n}\overline{a_{1n}}\det{\widetilde{\overline{a_{1n}}}} \\
&= (-1)^{1+1}\overline{a_{11}}\overline{\det{\widetilde{A_{11}}}} + (-1)^{1+2}\overline{a_{12}}\overline{\det{\widetilde{A_{11}}}} + ... + \\
&+ (-1)^{1+n}\overline{a_{1n}}\overline{\det{\widetilde{A_{11}}}} \\
&= \overline{\det{A}}
\end{align*}
$$
So now we can apply this result to show that
$$
\begin{align*}
\det(A^*) &= \det(\overline{A^t}) \\
&= \overline{\det(A^t)} \\
&= \overline{\det{A}} \quad \text{(we prove previously that $\det{A}=\det{A^t}$)}
\end{align*}
$$