Let \(V\) be. vector space over \(\mathbf{F} = \mathbf{R}\) or \(\mathbf{C}\).

$$ \begin{align*} \mathbf{C} = \{ z=a+ib \ | \ a, b \in \mathbf{R} \} \end{align*} $$

The complex conjugate of \(z\) is \(\bar{z} = a - ib\).

$$ \begin{align*} z\bar{z} = (a + ib)(a - ib) = a^2 + b^2 = |z|^2 \end{align*} $$
Definition
An inner product \(\langle \ , \ \rangle\) on a vector \(V\) is a map $$ \begin{align*} \langle \ , \ \rangle : \ &V \times V \rightarrow \mathbf{F} = \mathbf{R} \text{ or } \mathbf{C} \\ &(x, y) \rightarrow \langle x , y \rangle \end{align*} $$ such that
  1. \(\langle x+z, y \rangle = \langle x , y \rangle + \langle z , y \rangle\)
  2. \(\langle cx, y \rangle = c \langle x , y \rangle\)
  3. \(\langle x, y \rangle = \overline{\langle y, x \rangle}\). Note if \(\mathbf{F} = \mathbf{R}\), then \(\langle x, y \rangle = \langle y, x \rangle\)
  4. \(\langle x, x \rangle > 0 \text{ if } x \neq \bar{0}\)


Example 1

The simplest example is \(V = \mathbf{R}^1\) (vector space over \(\mathbf{R}\)) where

$$ \begin{align*} \langle x, y \rangle &= xy \end{align*} $$

This map satisfies the inner product properties. Notice that

  1. \(\langle x+z, y \rangle = (x+z)y = xy + zx = \langle x , y \rangle + \langle z , y \rangle \)
  2. \(\langle cx, y \rangle = cxy = c\langle x, y \rangle\)
  3. \(\langle x, y \rangle = \overline{\langle y, x \rangle} = yx = xy\).
  4. \(\langle x, x \rangle > 0 \text{ if } x \neq \bar{0}\)




Example 2

We can also define this inner product

$$ \begin{align*} \langle \langle x, y \rangle \rangle_c &= c^2xy \quad c \neq 0 \end{align*} $$

which also satisfies the inner product properties (TODO)



Example 3: Dot Product

Another example is \(V = \mathbf{R}^n\) over \(\mathbf{R}\) where

$$ \begin{align*} \langle x, y \rangle &= x_1y_1 + ... + x_ny_n = \sum_j x_jy_j \end{align*} $$

which is commonly known as the dot product.



Example 4

Another example is \(V = \mathbf{R}^2\) over \(\mathbf{R}\) where

$$ \begin{align*} \langle \langle x, y \rangle \rangle &= 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2 \end{align*} $$

We claim that \(\langle \langle \ , \ \rangle \rangle\) is an inner product. To see this check each property in the definition. For example for property 4, we see that

$$ \begin{align*} \langle \langle x, x \rangle \rangle &= 2x_1x_1 + x_1x_2 + x_2x_1 + x_2x_2 \\ &= 2x_1^2 + 2x_1x_2 + x_2^2 \\ &= x_1^2 + (x_1 + x_2)^2 > 0 \end{align*} $$




Example 5

Define \(V = \mathbf{C}\) over \(\mathbf{C}\) where

$$ \begin{align*} \langle z_1, z_2 \rangle &= z_1\bar{z_2} \end{align*} $$

Note here that if we defined the product as \(\langle z_1, z_2 \rangle = z_1z_2\). This will fail to satisfy the inner product conditions.



Example 6: Frobenius Inner Product

Define \(V = \mathbf{C}^0([0,1]) = \{f: [0,1] \rightarrow \mathbf{R} \ | \ f \text{ continuous}\}\)

$$ \begin{align*} \langle f, g \rangle &= \int_0^1 f(t)g(t)dt \end{align*} $$

is an inner product. Checking property (4)

$$ \begin{align*} \langle f, g \rangle &= \int_0^1 f(t)f(t) dt \\ &= \int_0^1 f^2(t) dt \\ &> 0 \text{ unless $f(t)=0 \ \forall t \in [0,1]$ } \end{align*} $$




Example 7

Define \(V = M_{n \times n}(\mathbf{R})\)

$$ \begin{align*} \langle A, B \rangle &= tr(B^tA) \end{align*} $$

where

$$ \begin{align*} tr: \ &M_{n \times n}(\mathbf{R}) \rightarrow M_{n \times n}(\mathbf{R}) \\ &C \rightarrow \sum_j C_{jj} = C_{11} + C_{22} + ... + C_{nn} \end{align*} $$

Does this map satisfy the inner product conditions?

  1. We want to show that \(\langle A + C, B \rangle = \langle A, B \rangle + \langle C, B \rangle\). Expand the inner product to see that
    $$ \begin{align*} \langle A+C, B \rangle &= tr(B^t(A+C)) \\ &= tr(B^tA + B^tC) \\ &= tr(B^tA) + tr(B^tC) \\ &= \langle A, B \rangle + \langle C, B \rangle \end{align*} $$
  2. We want to show that \(\langle cA, B \rangle = c\langle A, B \rangle\):
    $$ \begin{align*} \langle cA, B \rangle &= tr(B^t(cA)) \\ &= ctr(B^tA) \\ &= c\langle A, B \rangle \end{align*} $$
  3. We want to show that \(\langle A, B \rangle = \langle B, A \rangle\). (over \(\mathbf{R}\)). Note here that \(tr(C^t) = tr(C)\). Then
    $$ \begin{align*} \langle A, B \rangle &= tr(B^tA) \\ &= tr((B^tA)^t) \\ &= tr(A^tB) \\ &= \langle B, A \rangle \end{align*} $$
  4. We need to show that \(\langle A, A \rangle > 0 \text{ if } A \neq \bar{0} \in M_{n \times n}(\mathbf{R})\)
    $$ \begin{align*} \langle A, A \rangle &= tr(A^tA) \\ &= \sum_j (A^tA)_{jj} \\ &= \sum_j \sum_k (A^t)_{jk} (A)_{kj} \\ &= \sum_j \sum_k (A)_{kj} (A)_{kj} \\ &= \sum_j \sum_k A^2_{kj} \end{align*} $$
    Note here that \(A^2_{kj} > 0\) unless \(A_{1j},...A_{nj} = 0\). These are the entries of the \(j\)th column of \(A\). This means that this is zero unless \(A\) is the zero matrix.

In fact, \(tr(B^tA) = \sum_{ij} A_{ij}B_{ij}\). the definition of \(tr(B^tA)\) is for square matrices while the definition \(\sum_{ij} A_{ij}B_{ij}\) works for any matrices. This works for an inner product on matrices.



Inner Product Spaces

So far, we’ve seen that inner products are not unique. We can define many inner products on a given vector space. So we have the following definition to fix a specific inner product on a vector space

Definition
An inner product space is a vector space is a vector space \(V\) with a fixed inner product.



Example: (\(\mathbf{R}^2, \langle x,y \rangle = x_1y_1 + x_2y_2\)) is an inner product space different from \((\mathbf{R}^2, \langle x,y \rangle = 2x_1y_1 + x_1y_2 + x_2y_1 + x_2y_2)\)



The Norm of a Vector

For the rest of the lecture, we’re going to assume that we have a fixed inner product on \(V\).

Definition
Let \(V, \langle \ , \ \rangle\) be an inner product space. The length (or norm) of \(v \in V\) is $$ \begin{align*} \Vert v \Vert = \sqrt{\langle v, v \rangle} \end{align*} $$



Example \(V = \mathbf{C}^0([0,1])\), Let \(\Vert f \Vert: (\int_0^1 f(t)^2 dt)^{1/2}\). This is also called the \(L^2\)-norm.

Definition
The distance between \(x, y\) in \(V\) is \(\Vert x - y \Vert\)



Definition
The sphere of radius \(r\) and center \(x \in V\) is \(\{y \in V \ | \ \Vert x - y \Vert = r \}\)



Theorem
For any \(x, y \in V\) and \(c \in \mathbf{F}\)
  1. \(\Vert cx \Vert = |c|\Vert x \Vert \)
  2. \(\Vert x \Vert = 0 \leftrightarrow x = \bar{0}_V \)
  3. \(| \langle x , y \rangle | \leq \Vert x \Vert \Vert y \Vert \). Cauchy-Schwarz
  4. \(\Vert x + y \Vert \leq \Vert x \Vert \Vert y \Vert \). The Triangle Inequality



The proof for (a) and (b) follow easily. For (c). The motivation is from \(\mathbf{R}^2\) with the standard inner product.

$$ \begin{align*} \langle x , y \rangle &= x \cdot y = \Vert x \Vert \Vert y \Vert \cos(\theta) \\ | \langle x , y \rangle | &= x \cdot y = \Vert x \Vert \Vert y \Vert | \cos(\theta)| \end{align*} $$

But we know that \(| \cos(\theta)| \leq 1\). Therefore

$$ \begin{align*} | \langle x , y \rangle | &\leq x \cdot y = \Vert x \Vert \Vert y \Vert \end{align*} $$

But we want to prove this in general so:

Proof (c):

If \(y = \bar{0}_V\), then the inequality is true and we are done. So assume that \(y \neq \bar{0}_V\). If we multiply both sides by \(\frac{1}{\Vert y \Vert}\) which is a scalar, then this scalar can be factored out by property 1. Therefore, we can scale \(y\) by whatever factor we want and so let’s just assume that \(y\) has length 1 (\(\Vert y \Vert = 1\)). So it suffies to show that

$$ \begin{align*} | \langle x , y \rangle | &\leq \Vert x \Vert \\ | \langle x , y \rangle |^2 &\leq \Vert x \Vert^2 \text{ (because it's easier than dealing with a squareroot)} \\ &= \langle x, x \rangle \end{align*} $$

To show this, take the project of vector \(x\) onto vector \(y\) which has length 1. The projection is a vector \(x - \langle x , y \rangle y\). Moreover,

$$ \begin{align*} 0 &\leq \Vert x - \langle x , y \rangle y \Vert^2 \text{ ( the length of any vector $\geq 0$)} \\ &= \langle x - \langle x , y \rangle y, x - \langle x , y \rangle y \rangle \\ &= \langle x, x \rangle - \langle\langle x , y \rangle y, x\rangle + \langle x, -\langle x , y \rangle y\rangle + \langle - \langle x, y \rangle y, - \langle x, y \rangle y \rangle \text{( by property 1)} \\ &= \Vert x \Vert^2 - \langle x, y \rangle \langle y, x \rangle + \overline{- \langle x, y \rangle y, x \rangle} + \Vert -\langle x, y \rangle y \Vert^2 \\ &= \Vert x \Vert^2 - |\langle x, y \rangle |^2 - \overline{\langle x, y \rangle} \overline{\langle y, x \rangle} + |\langle x, y \rangle |^2 \Vert y \Vert^2 \\ &= \Vert x \Vert^2 - |\langle x, y \rangle |^2 - |\langle x, y \rangle |^2 + |\langle x, y \rangle |^2 \\ &= \Vert x \Vert^2 - |\langle x, y \rangle |^2 \end{align*} $$


Proof (d)

$$ \begin{align*} \Vert x + y \Vert^2 &= \langle x + y, x + y \rangle \\ &= \Vert x \Vert^2 + \langle x, y \rangle + \langle y, x \rangle + \Vert y \Vert^2 \\ &\leq \Vert x \Vert^2 + 2 |\langle x, y \rangle| + \Vert y \Vert^2 \text{ multiply a complex number by its conjecture to see}\\ &\leq \Vert x \Vert^2 + 2 \Vert x \Vert \Vert y \Vert + \Vert y \Vert^2 \text { (By (c))}\\ &= (\Vert x \Vert + \Vert y \Vert)^2 \\ \end{align*} $$





References

  • Math416 by Ely Kerman