Definition
A linear combination of the vectors \(u_1,...,u_k\) in \(V\) is a vector of the form $$ \begin{align*} a_1u_1 + a_2u_2 + ... + a_ku_k, \quad \text{where $a_1, a_2, ... a_k \in \mathbf{R}$}. \end{align*} $$


Example 1

\((4,3) \in \mathbf{R}^2\). This vector can be written as

$$ \begin{align*} (4,3) = 4(1,0) + 3(0,1). \end{align*} $$

So \((4,3)\) is a linear combination of \((1,0)\) and \((0,1)\).



Example 2

\(x^3 + 3x + \pi \in P_3\). in a linear combination of \(x^3, x^2, x, 1\) with \(a_1 = 1, a_2 = 0, a_3 = 3, a_4 = \pi\).



Span of of a Subset

Definition
Let \(V\) be a vector space and let \(S \in V\) be a subset. The span of \(S\) is the set of all linear combinations of elements in \(S\). $$ \begin{align*} Span(S) = \{a_1u_1 + a_2u_2 + ... + a_ku_k \quad|\quad a_1, a_2, ... a_k \in \mathbf{R}, u_1, u_2,...,u_k \in S\}. \end{align*} $$


Example 3

Let \(S = \{\bar{0}\}\), then \(Span(S) = \{\bar{0}\}.\)



Example 4

Let \(S = V\), then \(Span(S) = V.\)



Example 5

Let \(S=\{(1,0),(0,1)\}\). \(S \subset \mathbf{R}^2\). Then,

$$ \begin{align*} Span(S) &= \{a_1(1,0) + a_2(0,1) \ | \ a_1, a_2 \in \mathbf{R}\} \\ &= \{(a_1, a_2) \ | \ a_1, a_2 \in \mathbf{R}\} \\ &= \mathbf{R}^2. \end{align*} $$




Example 6

Let \(S=\{(1,m)\}\). \(S \subset \mathbf{R}^2\). Then,

$$ \begin{align*} Span(S) &= \{a_1(1,m) \ | \ a_1 \in \mathbf{R}\} \\ &= \{(a_1, ma_1) \ | \ a_1 \in \mathbf{R}\} \\ &= L_m. \end{align*} $$

This is the line through the origin with slope \(m\).



Example 7

Let \(S=\{(1,0,0),(0,0,1)\}\). \(S \subset \mathbf{R}^3\). Then,

$$ \begin{align*} Span(S) &= \{a_1(1,0,0) + a_2(0,0,1) \ | \ a_1, a_2 \in \mathbf{R}\} \\ &= \{(a_1, 0, a_2) \ | \ a_1, a_2 \in \mathbf{R}\} \\ \end{align*} $$

This is the \(xz\)-plane in \(\mathbf{R}^3\).

Theorem (part of 1.5 in the book)
For any nonempty subset \(S \subset V\), \(Span(S)\) is a subspace of \(V\).


Proof: Let \(S \subset V\) where \(V\) is a vector space. By definition we know that \(Span(S)\)

$$ \begin{align*} \{a_1u_1 + a_2u_2 + ... + a_ku_k \ | \ a_1, a_2, ... a_k \in \mathbf{R}, u_1, u_2,...u_k \in S\} \end{align*} $$

We will show that \(Span(S)\) is a subspace of (V) by verifying the three Subspace conditions.

  1. We need to show that \(\bar{0} \in Span(S)\). \(S\) is nonempty so we can choose some vector \(u \in S\). Since all linear combinations of \(u\) are in \(Span(S)\), then \(0u \in Span(S)\). But \(0u = \bar{0}\). Therefore, \(\bar{0} \in Span(S)\) and we're done.
  2. We need to show that \(Span(S)\) is closed under addition. Suppose \(u, v \in Span(S)\). We need to show that \(u + v \in Span(S)\). We can write \(u\) and \(v\) as follows
    $$ \begin{align*} u &= a_1u_1 + a_2u_2 + ... + a_ku_k \\ v &= b_1u_1 + b_2u_2 + ... + b_ku_k. \end{align*} $$
    Then the sum can be written as,
    $$ \begin{align*} u+v &= (a_1+b_1)u_1 + (a_2+b_2)u_2 + ... + (a_k+b_k)u_k. \end{align*} $$
    So \(u+v \in Span(S)\) as we wanted to show.
  3. We need to show that \(Span(S)\) is closed under scalar multiplication. Similar to the previous argument we can see that
    $$ \begin{align*} cu &= (ca_1)u_1 + (ca_2)u_2 + ... + (ca_k)u_k. \end{align*} $$
    So \(cu \in Span(S)\) as required.

From (a), (b), (c), we can conclude that \(Span(S)\) is a subspace of \(V\).



Example 7

Is \(x^3 - 3x + 5\) in \(Span(\{x^3 + 2x^2 - x + 1, x^3 + 3x^2 - 1\})\)?

For \(x^3 - 3x + 5\) to be in the span, this means that \(x^3 - 3x + 5\) can be written as a linear combinations of what’s inside the set. In other words, there exists \(a_1, a_2 \in \mathbf{R}\) such that

$$ \begin{align*} x^3 - 3x + 5 &= a_1(x^3 + 2x^2 - x + 1) + a_2(x^3 + 3x^2 - 1) \\ &= (a_1+a_2)x^3 + (2a_1 - 3a_3)x^2 + (-a_1)x + (a_1-a_2) \end{align*} $$

These equations are the same when the coefficients are equal. So equivalently we can solve the following system of equations:

$$ \begin{align*} a_1 + a_2 = 1 \\ 2a_2 + 3a_2 = 0 \\ -a_1 = -3 \\ a_1 - a_2 = 5. \end{align*} $$

We can use Gaussian Elimination to solve this system by doing a forward pass followed by a backward pass.

$$ \begin{align*} \begin{pmatrix} 1 & 1 & 1 \\ 2 & 3 & 0 \\ -1 & 0 & -3 \\ 1 & -1 & 5 \end{pmatrix}. \end{align*} $$

We’ll put the matrix in Row Echelon Form. Starting with zeroing out the entries below the first leading entry in the first column.

$$ \begin{align*} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & -2 \\ 0 & -2 & 4 \end{pmatrix}. \end{align*} $$

Continuing with the next leading entry to get.

$$ \begin{align*} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & -2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}. \end{align*} $$

This tells us that there is a solution so the answer is yes, we can write it \(x^3 -3x + 5\) is in the span above.

Definition
\(S \subset V\) generates \(V\) if \(Span(S)=V\).


Example 8

The set \(\{(1,0),(0,1)\}\) generates \(\mathbf{R}^2\).



Example 9

The following set

$$ \begin{align*} \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\} \end{align*} $$

generates the vector space of 2x2 symmetric matrices. How do we go about proving this?
Consider the matrix:

$$ \begin{align*} A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \end{align*} $$

If \(A\) was symmetric, then we must have \(a_{12} = a_{21}\) or \(a_{ij} = a_{ji}\) if \(i \neq j\). This means we can re-write \(A\) as

$$ \begin{align*} a_{11} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} + a_{12} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} + a_{22} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \end{align*} $$





References:

  • Math416 by Ely Kerman