Let \(x_n \geq 0\) for all \(n \in \mathbf{N}\). Show that if \((x_n) \longrightarrow x\), Then \((\sqrt{x_n}) \longrightarrow \sqrt{x}\).


For the definitions of sequences and what it means to for a sequence to converge, see this, for subsequences see this.
For the “show the limit” template and an example, see this.

Problem Discussion

We’ll follow a similar approach to proving the example in here. We want to show that \(\lim (\sqrt{x_n}) = x\). So we want to find \(N\) such that for any \(\epsilon > 0\),

$$ \begin{align*} \lvert \sqrt{x_n} - \sqrt{x} \rvert < \epsilon. \end{align*} $$

The trick here is to multiply the left hand side by the conjugate!!!

$$ \begin{align*} &\lvert \sqrt{x_n} - \sqrt{x} \rvert * \frac{\lvert \sqrt{x_n} + \sqrt{x} \rvert}{\lvert \sqrt{x_n} + \sqrt{x} \rvert} \\ &= \frac{\lvert x_n - x \rvert}{\lvert \sqrt{x_n} + \sqrt{x} \rvert}. \end{align*} $$

The numerator is exactly what we want. The denominator however might be 0 since \(x\) is non-negative. Therefore, we’ll just assume that \(x > 0\) for now to continue the proof and we’ll handle the case when \(x = 0\) separately. Also since the denominator is positive then we can just write:

$$ \begin{align*} \lvert \sqrt{x_n} - \sqrt{x} \rvert &= \frac{\lvert x_n - x \rvert}{\sqrt{x_n} + \sqrt{x}}. \end{align*} $$

So far so good but we also know that the sequence \((x_n)\) converges to \(x\) and therefore, it is bounded. This means that there exists some bound \(M\) such that \(|(x_n)| \leq M\) and so \(\sqrt{|(x_n)|} \leq \sqrt{M}\) (why?). Since \(x_n \geq 0\), then \(M \geq 0\) and we can remove the term to the get the following inequality:

$$ \begin{align*} \lvert \sqrt{x_n} - \sqrt{x} \rvert &= \frac{\lvert x_n - x \rvert}{\sqrt{x_n} + \sqrt{x}} \\ &< \frac{\lvert x_n - x \rvert}{\sqrt{x}} \\ \end{align*} $$

We can set \(\lvert x_n - x \rvert\) to anything we like. Particularly we want to set it to a value such that the terms would cancel out and we would get \(\epsilon\) at the end. So let it be \(\epsilon \sqrt{x}\). Remember that \(x\) is a constant so that’s okay.

$$ \begin{align*} \lvert \sqrt{x_n} - \sqrt{x} \rvert &< \frac{\lvert x_n - x \rvert}{\sqrt{x}} \\ &< \frac{\sqrt{x}\epsilon}{\sqrt{x}} = \epsilon. \end{align*} $$

Formal Proof

To show that \(\lim(\sqrt{x_n}) = \sqrt{x}\), let \(\epsilon > 0\) be arbitrary. We want to prove that there exists some \(n \geq N\) such that,

$$ \begin{align*} \lvert \sqrt{x_n} - \sqrt{x} \rvert < \epsilon \end{align*} $$

To do so, we’ll consider two cases for when \(x = 0\) and \(x > 0\). For case 1, suppose \(x > 0\). We are given that \(\lim x_n = x\). This means that there exists some \(n \geq N\) such that

$$ \begin{align*} \lvert x_n - x \rvert < \epsilon \sqrt{x} \quad \text{whenever $n \geq N$}. \end{align*} $$

Now assume that \(n \geq N\), then

$$ \begin{align*} &\lvert \sqrt{x_n} - \sqrt{x} \rvert * \frac{\lvert \sqrt{x_n} + \sqrt{x} \rvert}{\lvert \sqrt{x_n} + \sqrt{x} \rvert} \\ &= \frac{\lvert x_n - x \rvert}{\lvert \sqrt{x_n} + \sqrt{x} \rvert} \\ &= \frac{\lvert x_n - x \rvert}{\sqrt{x_n} + \sqrt{x}} \\ &< \frac{\lvert x_n - x \rvert}{\sqrt{x}} \quad \text{($(x_n)$ is bounded and $x_n \geq 0$)} \\ &< \frac{\lvert x_n - x \rvert}{\sqrt{x}} \\ &< \frac{\sqrt{x}{\epsilon}}{\sqrt{x}} = \epsilon, \\ \end{align*} $$

as required. For case 2 when \(x = 0\), we want to prove that

$$ \begin{align*} \lvert \sqrt{x_n} - 0 \rvert &< \epsilon \\ \lvert \sqrt{x_n} \rvert &< \epsilon \\ \end{align*} $$

We are given that \(\lim x_n = x\) or \(\lim x_n = 0\). This means that there exist some \(n \geq N\) such that

$$ \begin{align*} \lvert x_n - 0 \rvert = \lvert x_n \rvert &< \epsilon^2. \\ \end{align*} $$

Now assume that \(n \geq N\), then

$$ \begin{align*} \lvert \sqrt{x_n} \rvert &= \sqrt{x_n} \quad \text{since $x_n \geq 0$}\\ &= \sqrt{|x_n|} \\ &< \sqrt{\epsilon^2} = \epsilon, \end{align*} $$

as required. \(\blacksquare\)

References: