The Algebraic Limit Theorem
Let \(\lim x_n = x\). Then, \(\lim (\alpha x_n) = \alpha x\) for all \(\alpha \in \mathbb{R}\).
Strategy/Notes
For (i) we want to show that \(\lim (\alpha x_n) = \alpha x\). So for any \(\epsilon > 0\), we want to find \(N \in \mathbb{N}\) such that when \(n \geq N\), then
$$
\begin{align*}
\big\lvert \alpha x_n - \alpha x \big\rvert < \epsilon
\end{align*}
$$
Solving for \(n\):
$$
\begin{align*}
\big\lvert \alpha x_n - \alpha x \big\rvert &< \epsilon \\
\big\lvert \alpha \big\rvert \big\lvert x_n - x \big\rvert &< \epsilon \\
\big\lvert x_n - x \big\rvert &< \frac{\epsilon}{|\alpha|}.
\end{align*}
$$
So now we are ready to write a formal proof.
Proof
Let \(\epsilon > 0\) be given. If \(\alpha = 0\), then the result follows trivially since \(\alpha x_n = \alpha x = 0\) for all \(n \in \mathbb{N}\). So we may assume \(\alpha \neq 0\). Now, since \(\lim x_n = x\), then by the definition of limit, there exists a natural number \(N \in \mathbb{N}\) such that for all \(n \geq N\), we must have
$$
\begin{align*}
|x_n - x| &< \frac{\epsilon}{|\alpha|}.
\end{align*}
$$
We now verify that this choice has the desired property. Let \(n \geq N\). Then,
$$
\begin{align*}
\big\lvert \alpha x_n - \alpha x \big\rvert = \big\lvert \alpha \big\rvert \big\lvert x_n - x \big\rvert < \big\lvert \alpha \big\rvert \frac{\epsilon}{|\alpha|} = \epsilon. \\
\end{align*}
$$
Thus,
$$
\begin{align*}
\big\lvert \alpha x_n - \alpha x \big\rvert < \epsilon. \\
\end{align*}
$$
as required. \(\blacksquare\)
References
- Introduction to Analysis, An, 4th edition by William Wade
- Lecture Notes by Professor Chun Kit Lai
- Understanding Analysis by Stephen Abbott