Trigonometric Cheat Sheet
Adding identities and formulas as they come up while learning trigonometry!
Pythagorean Identities
$$
\begin{align*}
sin^2(\theta) + \cos^2(\theta) &= 1 \\
tan^2(\theta) + 1 &= \sec^2(\theta) \\
1 + cot^2(\theta) &= \csc^2(\theta)
\end{align*}
$$
Low of Sines
$$
\begin{align*}
\frac{sin(\theta)}{a} = \frac{\sin(\beta)}{b} = \frac{\sin(\gamma)}{c}
\end{align*}
$$
Low of Cosines
$$
\begin{align*}
a^2 &= b^2 + c^2 - 2bc \cos(A) \\
b^2 &= a^2 + c^2 - 2ac \cos(B) \\
c^2 &= a^2 + b^2 - 2ab \cos(C) \\
\end{align*}
$$
Sum and Difference Formulas
$$
\begin{align*}
\sin(\alpha + \beta) &= \sin(\alpha)\cos(\beta) + \cos(\alpha)\sin(\beta) \\
\sin(\alpha - \beta) &= \sin(\alpha)\cos(\beta) - \cos(\alpha)\sin(\beta) \\
\cos(\alpha + \beta) &= \cos(\alpha)\cos(\beta) - \sin(\alpha)\sin(\beta) \\
\cos(\alpha - \beta) &= \cos(\alpha)\cos(\beta) + \sin(\alpha)\sin(\beta) \\
\tan(\alpha + \beta) &= \frac{\tan(\alpha) + \tan(\beta)}{1 - \tan(\alpha)\tan(\beta)} \\
\tan(\alpha - \beta) &= \frac{\tan(\alpha) - \tan(\beta)}{1 + \tan(\alpha)\tan(\beta)}
\end{align*}
$$
Double Angle Formulas
$$
\begin{align*}
\sin(2x) &= 2\sin(x)\cos(x) \\
\cos(2x) &= \cos^2x - \sin^2(x) \\
&= 1 - 2sin^2x \\
&= 2cos^2x - 1 \\
\tan(2x) &= \frac{2\tan(x)}{1 - tan^2(x)}
\end{align*}
$$
Cofunction Identities
$$
\begin{align*}
\sin(x) = \cos\big(\frac{\pi}{2}-x\big) \\
\cos(x) = \sin\big(\frac{\pi}{2}-x\big) \\
\tan(x) = \cot\big(\frac{\pi}{2}-x\big) \\
\cot(x) = \tan\big(\frac{\pi}{2}-x\big) \\
\sec(x) = \csc\big(\frac{\pi}{2}-x\big) \\
\csc(x) = \sec\big(\frac{\pi}{2}-x\big) \\
\end{align*}
$$
Product to Sum Formulas
$$
\begin{align*}
\sin(\alpha)\cos(\beta) = \frac{1}{2}\big[\sin(\alpha + \beta) + \sin(\alpha - \beta)\big] \\
\cos(\alpha)\sin(\beta) = \frac{1}{2}\big[\sin(\alpha + \beta) - \sin(\alpha - \beta)\big] \\
\sin(\alpha)\sin(\beta) = \frac{1}{2}\big[\cos(\alpha - \beta) - \cos(\alpha + \beta)\big] \\
\cos(\alpha)\cos(\beta) = \frac{1}{2}\big[\cos(\alpha - \beta) + \cos(\alpha + \beta)\big] \\
\end{align*}
$$
Sum to Product Formulas
$$
\begin{align*}
\sin(\alpha) + \sin(\beta) = 2\sin\big(\frac{\alpha + \beta}{2}\big)\cos\big(\frac{\alpha - \beta}{2}\big) \\
\sin(\alpha) - \sin(\beta) = 2\cos\big(\frac{\alpha + \beta}{2}\big)\sin\big(\frac{\alpha - \beta}{2}\big) \\
\cos(\alpha) + \cos(\beta) = 2\cos\big(\frac{\alpha + \beta}{2}\big)\cos\big(\frac{\alpha - \beta}{2}\big) \\
\cos(\alpha) - \cos(\beta) = -2\sin\big(\frac{\alpha + \beta}{2}\big)\sin\big(\frac{\alpha - \beta}{2}\big) \\
\end{align*}
$$
Even and Odd Functions
All the trigonometric functions are odd except for $\cos$ and $\sec$.
$$
\begin{align*}
\sin(-\theta) = -\sin(\theta) \qquad \csc(-\theta) = -\sin(\theta) \\
\tan(-\theta) = -\tan(\theta) \qquad \cot(-\theta) = -\cot(\theta) \\
\cos(-\theta) = \cos(\theta) \qquad \sec(-\theta) = -\sec(\theta) \\
\end{align*}
$$
The Unit Circle
References: